
A/R -g?-a- '3

-ON THE MODIFIED WESTERGAARD EQUATIONS

- FOR CERTAIN PLANE CRACK PROBLEMS

J. Eftis and H. Liebowitz

School of Engineering and Applied Science
The George Washington University

Washington, D.C.

ABSTRACT:

An error in Westergaard's equation for a certain class

of plane crack problems, originally pointed out by Sih, is

briefly discussed anew. The source of the difficulty is

traced to z.n oversight in an earlier_- work by MacGregor, upon

whose work Westergaard based his equations. Several example:;

of interest. illustrating the consequences of the necessary

correction to these equations are given.
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INTRODUCTION

The Westergaard equations, which apply for a certain class

of plane problems in linear elasticity, were'shown to be gen-

erally incorrect by Sih in 1966, [1].. Specifically, by use of

the well known'Goursat-Kolosov complex representation of the

plane problem, it was shown that the stress and displacement

field equations appropriate to the restricted class of problems

alluded to above include a real constant term which is lacking

in the Westergaard equations.

In this paper the constant term which, according to Sih's

analysis, 3hould be appended to Westergaard's equations, is shown

to be the result of an oversight in a lesser known work of

MacGregor [2], upon whose work Westergaard based his formula-

tions [3]. The consequences of the corrected equations are

then demon;strated for several familiar plane crack problems,

and for thei approximate plane crack-tip stress and displacement

field equations.

The problem of the centrally cracked strip of finite width

loaded unaxially in uniform tension is also discussed. A

Westergaard type stress function is introduced which provides an

approximate closed form solution. This approximate solution has

the merits of yielding the Fedderso: secant formula for the crack-

tip stress intensity factor, and for providing an analytical

expression for the crack opening displacement which closely-

matches experimental data and which is a considerable improv.,-

ment over the calculation first introduced by Irwin [4].
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MODIFIED WESTERGAARD EQUATIONS

In MacGregor's complex characterization of the plane

problem (omitting body force) the holomorphic functions

J(z) = 0(x,y) + i Q(x,y)

H(z) = (x,y) + i 0 (xy) ...................... (1)

are introduced together with their derivatives

i J'(z) = i W(z) = D(x,y) + i T(x,y)

H'(z) E - K(z) = - (x,y) - i (x,y). ......... (2)

The bi-harmnonic Airy stress function U(x,y) is represented

as a linea:r combination of the single-valued harmonic

functions i3 and 0o by

U(x,y. = y 0 + 00 = U(z,z) = i(zz) Im[iJ(z]42

+ .Re[H(z)] ........... (3)

The comple;: representation of the plane stress field is

then readil..y shown to be

axx = 2 + y + , 2Re[iW(z)] - yIm[iW'(z)] + Re[K'(z)]

Oyy = - Y- + yIm[iW'(z)] - Re[K'(z)]

ax - - y + = - Im[iW(z)] - yRe[iW'(z)]
xy xIm[K ....... (4)

Im CK' z) i . ...... (4)
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For the restricted class of plane problems for which

axy = 0 at. all points along the line y·= 0, which includes

plane crack problems in which the internal crack (or cracks)

is situated along the x axis and where the applied loads

are symmetrically located with respect to the crack plane,

it follows from (4) that

T =- Im[iW(z) + K'(z)] = C. .................. (5)

Consequently

ae av _ an
ax ay ax

from which it necessarily follows that

a_ a aV
ax ax ax

which is satisfied in the most general sense if one chooses

a +.A E .... (6)

or

Re[iW(z) + K'(z)] E - A ....................... (7)

everywhere. Here A is a real constant. The oversight in

MacGregor's work rests in the fact that A was omitted or, put

another way, was necessarily presumed to be zero. Substituting

equations (5) thru (7) into (4) and introducing

Z(Z) E i W(Z) .................. ......... (8)
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one obtains ~

xx = Re[Z(z)] - yIm[Z'(z)] -A
xx _

yy = Re[Z(z)] + yIm[Z'(z)] + A
yy

Cxy = - yRe[Z'(z)] ..........]............. (9)

which are the equations obtained by Sih when Z(z) E 25'(z).

Because the stress components are required to satisfy given

boundary conditions the constant A will in general depend or.

the manner of the applied loading and will vanish only for

rather special loading conditions.

The displacement field equations must likewise be cor-

rected. In the Goursat-Kolosov representation the displace-

ment field is specified by the well known form [S]

2p (u+iv) = K (Z) - Z 'Z) - -Ze ......... (10)

where u(x,y) and v(x,y) are respectively the x and y com-

ponents of the displacement vector, p = E/2(l+v) is the shear

modulus, E and v are Young's Modulus and Poisson's Ratio

respectively, and K = [3-v/l+v] for plane stress and K = [3-4v]

for plane strain. The holomorphic functions ¢(z) and 4(z) can

be shown to be related to those introduced in equations (1),

(2) and (3) by the relations

iW(z) = Z(z) = 2¢'(z)

H(z) = X(z) + ZO(Z)
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H'(z) =- K(z) = (z) + c(z) + z4V(z)

X'(z) = *(z).. .................. ................ (11)

Adding to -(10) its complex conjugate in the case of plane

stress, one obtains

Eu = (3-v)Re[V(z)] - (1+v){xRe'['(z)] + yIm[c'(z)]

+ Re[p(z)]}.

Ev = (3-v)Im[4(z)] + (l+v){xIm[n'(z)] - yRe[f'(z)]

+ Im[4(z)]}. ............ (12)

The Goursa:-Kolosov equivalent of equations (5) and (7), with

the help o:. (11), read

Im[z"'(z) + p'(z)] = 0

Re[z''(z) + i'(z)] E A /

or

z "(z) + p(z)Y = A ............................ (13)

everywhere. Integrating

Z4"(z) - 4(z) + p(z) = Az + B

which is equavalent to the pair of equations

xRe[4'(z)] - yIm[q'(z)] - Re[b(z)] + Re[p(z)] = Ax

yRe[' (z)] + xIm[I'(z)] - Im[b(z)] + Im[p(z)] = Ay

-...................... -(14)
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The constant-B, which must be real, can be omitted because its

retention merely serves to add to the displacement field a

term which-.represents a rigid body displacement. Upon combining

(12) with (14)

Eu = 2(1-v)Re[f(z)] - (l+v)2y Im[%'(z)] - (l+v)Ax

Ev = 4Im[4(z)] - (l+v)2y Re[b'(z)] + (l+v)Ay ...... (15)

To avoid confusion with the bar symbol used to denote complex

conjugatici let

2;p(z) =3 Z(z)dz E Z(Z) ..................... (16)

where upon

Eu = 1l-v)Re[Z(z)] - (l+v)yIm[Z(z)] - (l+v)Ax

Ev = 2Im[Z(z)] - (l+v)y Re[Z(z)] + (l+v)Ay / ....... (17)

emerge as ithe modified Westergaard field equations for plane

stress.

APPLICATIO! IS

To illustrate use of the modified Westergaard equations

it is worth. while to treat anew the familiar problem of the

infinite plate with colinear periodic cracks as shown in Fig, 1.

The factor k is any real number.
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Using the Kolosov equations [5]

X + aOxx + yy

a xxyy x

= 2{4'(z) + T'(z)} = 4Re[b'(z)]

+ 2iaxy = 2{"(z) + '(z)}xy (18)

The boundary conditions can be expressed as follows: For all

points situated on any crack border

ayy + iaxy = 2Re[V'(z)] + {Iz"(z) + ' (z)} = 0 ... (19)

IZI = :x

yy(c) = ka, a (c) = oxy) = 0 ....... (20)!~Yy ~ xx xy
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Due to the symmetry of the loading relative to the x axis (13)

must be satisfied. With z = z at y = 0, (13) reduces (19) to

- -.... 2Re[9'(z)] = - A. ............ ......... (21)

for all points on.any crack border. In semi-inverse fashion,

owing to the periodic and symmetric nature of the crack spacing,

the function 2¢'(z) can be chosen to have the form

2c'(z) g() -A ........... (22)

ssin2 () sin2 a)

--where the-denominator of the first term has no real part alcng

the crack borders. The function g(z) is presumed to be holc-

morphic in the region of definition, except possibly at the

point z = a, and must be such that Im[g(x)] = 0 along the crack

borders. The function 2q'(z): so defined satisfies boundary con-

dition (21).

From boundary condition (20)

oyy(c) - U<x(c) + 2ia xy() = (l-k)o = 4yIm[W"(z)] + 2A

- 4iy Re[p"(z)]

from which

(1-k)a = (z-z)2' (z) + 2A, zi + c. .. (23)

Inasmuch a.; 24'(z). must be holomorphic throughout, including

the point at infinity, it will therefore be continuous at ani

8
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in the neighborhood of this point, and for Izl arbitrarily

large

24'(z) g(z) A
sin ( -)

where upon

(z-z)t g'(z) -z cos -} + 2A= (-k)a
sin (r-) sin ((-)

.................. (24)

.'.--which can be identically satisfied by choosing

g(z) = a sin (Tr)

1
A- (l-k) . ..... ;.................... (25)

2

The condition that Im[g(x)] = 0 along the crack borders is

also seen to be satisfied.

The stress function which solves this problem is thus

llz
a sin(-)

Z(z) (l-k)a ....... (26)

{sin2( z) sin2 1za) 

For uniaxial uniform tension applied in the y direction,

k = 0 and A = a/2. The stress function (26) then assumes

a form equivalent to that given by Sanders [6]. When k = 1,

A = 0, which corresponds to loading by equal uniform biaxial

tension. 'The stress function introduced by Westergaard for

this problem in reference [3] is therefore a-solution only

for this special loading condition.
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As another illustration of consequence concerning this

particular class of plane crack problems, consider the so-

called crack-tip stress and displacement field equations.

These can be obtained for opening mode crack. surface displace-

ments (mode I) by consideration of the problem of Fig. 1,

modified to a single centrally located crack of length 2a.

A stress function which will satisfy the boundary conditions

along such a cut has the form

Z2(z) = g(z) -
{z2_a2 1 / 2

Proceeding as in the previous'example, it will turn out that

g(z) = -z and A = (1-k)a/2 so that

Z(z' - . . .. (27)1/2 2{z2 21/2 (l-k) 

Introducing crack-tip polar coordinates (r,O) through the

ie
coordinate transformation Z = (z-a) = re

Z (+) = a ( + a) 1
1/2 -k_a2 2

{(s+a) 2-a2}

For |C| very small, i.e., fI1 << a

K
Z() - - (l-k) . (28)

{2 }1/2 2 ....................

where

KI - {ra}1 (/2

10



is the crack-tip stress intensity factor. Substituting (28) into

(9), (16) and (17) one obtains for -the plane stress crack-tip

stress and displacement fields the approximations

KI
a = x -}

2 cos(-) [1- sin(-) sin( k
xx 2r1/22 2

KI 0 . 30
=yy {2 r}1/2 COS (-) [1+ sin( -) sin(--)]

K 3
y - 1/2 sin (-) cos (-) cos (

K r 1/2 1-v 2 
u XI {-- } cos(b)[(l-_)+ sin (i)]- (l-k)r cos 8

KI {}r 1 2 s n (2 E)]

vj-{ 1/2 -)2 cos

va+ (-k)r sini .... (30)

Again only when k = 1, i.e., equal uniform biaxial tensile

loading, do these equations reduce to the form currently fouaId

in the literature [7].

To further illustrate use of thle modified Westergaard

equations consider the centrally cracked strip (plate) of

finite width loaded uniaxially in uniform tension, Fig. 2, of

great interest in fracture toughness testing, and which has

not been given an-exact closed form solution.
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A widE;ly used approximate solution to this problem was

first introduced by Irwin [4], by means of the stress func-

tion (26) with k = 1, which, as has been shown, is the exact

solution tc the periodic colinear crack problem in an infinite

sheet loaded in uniform biaxial tension. To the stress field

associated with this stress function Irwin adds a uniform

horizontal compressive stress of magnitude c along the vertical

edges of the strip which, interestingly, has the effect of

compensating for the missing A term. This combination satisfies

12
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boundary conditions along the vertical edges, leaving a

horizontal stress of varying magnitude which depends on the

relative crack size. The crack tip stress intensity factor

emenating from this stress function is the so-called tangent

formula

1/2
K

I
= ¢({W tan () ...... ............. (31)

Subsequently more accurate truncated series (poly-

normial) representations for K
I
have obtained by Isida [8]

and Srawley et.al. [9], which show the tangent formula to be

in varying degree of small error, depending on the crack size.

Recently a secant formula has been proposed by Fedderson [9]

K
I

= c'{ra sec (W)}1/ ........................... (32

!/
which matches almost identically Is:ida's KI values, deemed

to be the most accurate. Having the added virtue of being

concise anC. therefore relatively simple to use, Fedderson's

secant foriiula has now in some quarters replaced the tangent

formula in fracture toughness testing.

There will be some practical interest then in obtaining

the corresponding stress function, that is, one which comes

acceptably close to solving the problem of Fig. 2 and which

yields the secant formula for KI.

It is convenient to let

Z(z) - Ztz) - A ................................ :33)
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Then

xx = Re[Z*(z)] - yIm [Z (z)] -2A

ayy Re[Z(z) + ym [Z*(z) ................ (34)

ax yRe [Z* (z)]
xy

Z(z) (Z*(z) - A) dz =-Z*(zi - Az ............. (35)

and

Eu = (l-v) Re[Z*(z)] - (l+v) yIm[Z*(z)] --2Ax.---...---.--.

·... . (36)

Ev = 2Im[Z*(z)] - (1+v) yRe[,;*(z)] + 2vAy

A stress function which satisfies the crack border

boundary condition; partially satisfies the vertical edge

boundary condition and yields the secant formula for KI has

the form
1/2

o{,,a csc (-a-) sin(z)
Z(z) = Z*(z) -A =

.s 2 7iz .2 ra 1/2
{sin 2 () sir: (-}

W W

~1 a{a } 7a 1/2
-- a{-- ( csc-) (37
2 W W

i8
For |Sj << a, where 5 = z-a = re,

1/2Iracsc (,a)

Z(r) =
2·rr? .ra ira 1/2

| 2 sin() cosc(a 1

sin2( ) + sin(w cos a
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from which

1/2.
a{*a sec(Wa)} K

* . (38)
Z( ) = 2 /2 1 / 2 ............ (38)

Using (38) and

1/2
2A = {a csc (a) (3......................... 9)

in (34) thru (36) will give the crack tip stresses and dis-

placements as in equations (30), except that (1-k)a is

replaced by 2A as given by (39).

The crack border condition

- =ar - a = 0, y = < a
yy xy

is seen to be satisfied by inspection. At. z W+ iy2 + iy

which has no real part. Thus siY) = for all On the

other hand

2 2

1il- [_ 3 [1+ a cosh (')y 
Oxich hs no ralpart Th xy( ,y)(= 2A

a(Y)=2A Cos_- . - ../. .(40)S 'l [tra slin( (L --

I W
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(37) would be an exact solution if the right side of (40) were

to vanish for all values of y, all other boundary conditions<

having been satisfied. Results of calculation of (40) are

shown in Fig. 3. For small crack sizes, (ra/W) < 0.3, the

right side of (40) gives values values very close to zero

along the entire vertical edge, having a maximum value of

about four percent of the applied load at the crack plane

when (wa/W) = 0.3. For (7ra/W) > 0.5 the resulting horizontal

boundary stress exceeds fifteen percent of the applied load

at the crack plane. The pattern of this boundary stress

distribution is interesting in that.through Poisson's Ratio

effects it tends to suppress vertical displacement of points

situated just above and below the crack plane.

Owing to the greater relative accuracy of the secant

formula for KI, one might expect that for small to moderate

crack sizes, e.g., (rra/W) < 0.5, the stress function (37)

will yield good estimates for other centrally located quantities

such as the crack opening displacement, of interest in elastic

compliance calibrations. For displacement gage points located

along the plate center line, it follows from (36), after soma

calculation, that

W v(o,y) = csc(l )} 

-(1vY) Yial+ [--in W+ Y (41)
+
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Calculation of (41) is compared with experimental data

obtained from Alum. 7075-T6 center cracked sheets, reported

in reference [10], and shown in Fig. 4. The data points

defining the experimental curve wera obtained in the low load

or elastic range. The-predicted crack opening displacement,

eq. (41), is a considerable improve:nent over Irwin's cal-

culation, and is surprisingly close to the experimental curve

in the large crack size range where the vertical edge boundary

condition i.s poorly approximated. rhe fact that the predicted

compliance curve lies entirely below the experimental curve

appears. to be explainable by the par:ticular nature of the dis-

tribution of the excess of vertical edge boundary stress shown

in Fig. 3. Imposition of an identical distribution along the

vertical edges, but reversed in sen:;e, (leaving those edges

free of traction as they should be) would tend to increase

somewhat the vertical displacement :rom that given by (42) for

all points a little above and below the crack plane and would-

thereby elevate the curve of (41).
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Alumirnum 7075 - T6

W = 9.0"
Gage B = 1/3" (thickness)
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